有 Java 编程相关的问题?

你可以在下面搜索框中键入要查询的问题!

Java8Puzzle解决方案无限执行

我正在寻找使用A* Algorithm解决8-puzzle问题的方法。我在互联网上找到了this项目。请查看文件-proj1EightPuzzle。proj1包含程序的入口点(函数main()),EightPuzzle描述了谜题的特定状态。每个州都是8字谜的一个对象
我觉得逻辑上没有错。但它会为我尝试过的这两个输入永远循环:{8,2,7,5,1,6,3,0,4}{3,1,6,8,4,5,7,2,0}。它们都是有效的输入状态。代码有什么问题


注意

  • 为了更好地查看,请将代码复制到记事本++或其他文本中 编辑器(能够识别java源文件) 因为代码中有很多注释
  • 由于*需要启发式,他们提供了使用 曼哈顿距离和计算 放错地方的瓷砖。并确保执行最佳启发式 首先,他们实施了PriorityQueue。这个compareTo() 函数在EightPuzzle类中实现
  • 可以通过更改proj1类的main()函数中p1d的值来更改程序的输入
  • 我之所以说上述两个输入存在解决方案,是因为applethere解决了它们。请确保从小程序中的选项中选择8-puzzle。

    EDIT1
    我给了这个输入{0,5,7,6,8,1,2,4,3}。它花了大约10 seconds的时间,并给出了26个动作的结果。但是小程序在0.0001 secondsA*中给出了一个带有24 moves的结果。

    EDIT2
    在调试过程中,我注意到随着节点的扩展,新节点在一段时间后都有一个启发式-f_nas1112。它们似乎从未减少。因此,一段时间之后,{}中的所有状态都有11或12的启发式。因此,没有太多可供选择的节点,可以扩展到哪个节点。因为最小的是11,最高的是12。这正常吗

    EDIT3
    这是发生无限循环的代码段(在proj1-astar()中)openset是包含未展开节点的优先队列,closedset是包含展开节点的链接列表

while(openset.size()>;0){

                    EightPuzzle x = openset.peek();


                    if(x.mapEquals(goal))
                    {

                             Stack<EightPuzzle> toDisplay = reconstruct(x);
                             System.out.println("Printing solution... ");
                             System.out.println(start.toString());
                             print(toDisplay);
                             return;
                             
                    }          
                    closedset.add(openset.poll());
                    LinkedList <EightPuzzle> neighbor = x.getChildren();              
                    while(neighbor.size() > 0)
                    {
                            EightPuzzle y = neighbor.removeFirst();
                            if(closedset.contains(y)){
                                    continue;
                            }          
                            if(!closedset.contains(y)){
                                    openset.add(y);
                            }              
                    }
               
            }




EDIT4

我已经找到了这个无限循环的原因。看看我的答案。但是执行大约需要25-30秒,这是相当长的时间。A*应该比这快得多。小程序在0.003秒内完成此操作我将奖励改善绩效的奖金


对于快速参考,我已粘贴了两个类,没有注释:

八尺


 import java.util.*;
    
    public class EightPuzzle implements Comparable <Object> {
           
           
            int[] puzzle = new int[9];
            int h_n= 0;
            int hueristic_type = 0;
            int g_n = 0;
            int f_n = 0;
            EightPuzzle parent = null;
    
           
            public EightPuzzle(int[] p, int h_type, int cost)
            {
                    this.puzzle = p;
                    this.hueristic_type = h_type;
                    this.h_n = (h_type == 1) ?  h1(p) : h2(p);
                    this.g_n = cost;
                    this.f_n = h_n + g_n;
            }
            public int getF_n()
            {
                    return f_n;
            }
            public void setParent(EightPuzzle input)
            {
                    this.parent = input;
            }
            public EightPuzzle getParent()
            {
                    return this.parent;
            }
    
            public int inversions()
            {
                    /*
                     * Definition: For any other configuration besides the goal,
                     * whenever a tile with a greater number on it precedes a
                     * tile with a smaller number, the two tiles are said to be inverted
                     */
                    int inversion = 0;
                    for(int i = 0; i < this.puzzle.length; i++ )
                    {
                            for(int j = 0; j < i; j++)
                            {
                                    if(this.puzzle[i] != 0 && this.puzzle[j] != 0)
                                    {
                                    if(this.puzzle[i] < this.puzzle[j])
                                            inversion++;
                                    }
                            }
    
                    }
                    return inversion;
                   
            }
            public int h1(int[] list)
            // h1 = the number of misplaced tiles
            {
                    int gn = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != i && list[i] != 0)
                                    gn++;
                    }
                    return gn;
            }
            public LinkedList<EightPuzzle> getChildren()
            {
                    LinkedList<EightPuzzle> children = new LinkedList<EightPuzzle>();
                    int loc = 0;
            int temparray[] = new int[this.puzzle.length];
            EightPuzzle rightP, upP, downP, leftP;
                    while(this.puzzle[loc] != 0)
                    {
                            loc++;
                    }
                    if(loc % 3 == 0){
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
    
                    }else if(loc % 3 == 1){
                    //add one child swaps with right
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                           
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
                            //add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;
                           
                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }else if(loc % 3 == 2){
                    // add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;
                           
                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }              
                   
                    if(loc / 3 == 0){
                    //add one child swaps with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;
                           
                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
    
                            downP.setParent(this);
    
                            children.add(downP);
                   
                           
                    }else if(loc / 3 == 1 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;
                           
                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);
    
                            children.add(upP);
                            //add one child, swap with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;
                           
                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            downP.setParent(this);
    
                            children.add(downP);
                    }else if (loc / 3 == 2 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;
                           
                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);
    
                            children.add(upP);
                    }
    
                    return children;
            }
            public int h2(int[] list)
            // h2 = the sum of the distances of the tiles from their goal positions
            // for each item find its goal position
            // calculate how many positions it needs to move to get into that position
            {
                    int gn = 0;
                    int row = 0;
                    int col = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != 0)
                            {
                                    row = list[i] / 3;
                                    col = list[i] % 3;
                                    row = Math.abs(row - (i / 3));
                                    col = Math.abs(col - (i % 3));
                                    gn += row;
                                    gn += col;
                            }
                           
                    }
                    return gn;
            }
    
            public String toString()
            {
                    String x = "";
                    for(int i = 0; i < this.puzzle.length; i++){
                            x += puzzle[i] + " ";
                            if((i + 1) % 3 == 0)
                                    x += "\n";
                    }
                    return x;
            }
            public int compareTo(Object input) {
                   
                   
                    if (this.f_n < ((EightPuzzle) input).getF_n())
                            return -1;
                    else if (this.f_n > ((EightPuzzle) input).getF_n())
                            return 1;
                    return 0;
            }
           
            public boolean equals(EightPuzzle test){
                    if(this.f_n != test.getF_n())
                            return false;
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != test.puzzle[i])
                                    return false;
                    }
                    return true;
            }
            public boolean mapEquals(EightPuzzle test){
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != test.puzzle[i])
                                    return false;
                    }
                    return true;
            }
    
    }

proj1

import java.util.*;

public class proj1 {

        /**
         * @param args
         */
       
        public static void main(String[] args) {
               
               
                int[] p1d = {1, 4, 2, 3, 0, 5, 6, 7, 8};
                int hueristic = 2;
                EightPuzzle start = new EightPuzzle(p1d, hueristic, 0);
                int[] win = { 0, 1, 2,
                                          3, 4, 5,
                                          6, 7, 8};
                EightPuzzle goal = new EightPuzzle(win, hueristic, 0);
               
                astar(start, goal);

               

        }
       
        public static void astar(EightPuzzle start, EightPuzzle goal)
        {
                if(start.inversions() % 2 == 1)
                {
                        System.out.println("Unsolvable");
                        return;
                }
//              function A*(start,goal)
//           closedset := the empty set                 // The set of nodes already evaluated.
                LinkedList<EightPuzzle> closedset = new LinkedList<EightPuzzle>();
//           openset := set containing the initial node // The set of tentative nodes to be evaluated. priority queue
                PriorityQueue<EightPuzzle> openset = new PriorityQueue<EightPuzzle>();

                openset.add(start);
               

                while(openset.size() > 0){
//               x := the node in openset having the lowest f_score[] value
                        EightPuzzle x = openset.peek();

//               if x = goal
                        if(x.mapEquals(goal))
                        {
//                   return reconstruct_path(came_from, came_from[goal])
                                 Stack<EightPuzzle> toDisplay = reconstruct(x);
                                 System.out.println("Printing solution... ");
                                 System.out.println(start.toString());
                                 print(toDisplay);
                                 return;
                                 
                        }
//               remove x from openset
//               add x to closedset
                        closedset.add(openset.poll());
                        LinkedList <EightPuzzle> neighbor = x.getChildren();
//               foreach y in neighbor_nodes(x)                
                        while(neighbor.size() > 0)
                        {
                                EightPuzzle y = neighbor.removeFirst();
//                   if y in closedset
                                if(closedset.contains(y)){
//                       continue
                                        continue;
                                }
//                   tentative_g_score := g_score[x] + dist_between(x,y)
//      
//                   if y not in openset
                                if(!closedset.contains(y)){
//                       add y to openset
                                        openset.add(y);
//                      
                                }
//                 
                        }
//               
                }
        }

        public static void print(Stack<EightPuzzle> x)
        {
                while(!x.isEmpty())
                {
                        EightPuzzle temp = x.pop();
                        System.out.println(temp.toString());
                }
        }

        public static Stack<EightPuzzle> reconstruct(EightPuzzle winner)
        {
                Stack<EightPuzzle> correctOutput = new Stack<EightPuzzle>();
               
                while(winner.getParent() != null)
                {
                correctOutput.add(winner);
                winner = winner.getParent();
                }

                return correctOutput;
        }
       
        }
   

共 (4) 个答案

  1. # 1 楼答案

    从另一个论坛获得优化的答案

    openset.size()neightbor.size()
    分别更改为
    {}和neightbor.isEmpty()

    size()遍历整个列表,随着列表变大,它需要越来越多的时间。并更改EightPuzzle x = openset.peek();
    调用EightPuzzle x = openset.poll();并重用x,而不是调用peek()poll()


    现在它在^{中处理

  2. # 2 楼答案

    发现了问题。这是用于检查closedset中是否存在节点的条件

    if(!closedset.contains(y))
    

    linkedlist(closedset)通过调用类的equals()执行contains(),在本例中是EightPuzzleEightPuzzle中的equals函数定义如下

    public boolean equals(EightPuzzle test){
    
                    if(this.f_n != ((EightPuzzle)test).getF_n())
                           return false;
                //System.out.println("in equals");
                    for(int i = 0 ; i < this.puzzle.length; i++)
                    {
                            if(this.puzzle[i] != ((EightPuzzle)test).puzzle[i])
                                    return false;
                    }
                    return true;
            }
    

    但从未调用此函数,因为如果要重写对象的equals()类,则应使用正确的签名

     public boolean equals(Object test). 
    

    需要再做一次更改-注释equals()的前两行

    我得到了答案。但对于某些输入,代码仍然需要25-30秒。对于*,这是不可能的。小程序在0.003秒内解决了这个难题。如果有人知道如何提高绩效,请告诉我
    我将把赏金奖励给那个人

  3. # 3 楼答案

    我相信你的代码没有问题,但是,请注意,并非所有的8字谜问题都是可以解决的!所以首先检查{8,2,7,5,1,6,3,0,4}和{3,1,6,8,4,5,7,2,0}是否是可解的8字谜

  4. # 4 楼答案

    这里有一个建议。我的计时器为您的示例报告0毫秒。在这里给出的较难的谜题上,需要31个动作才能完成,需要96毫秒

    对于闭集,HashSet比链表更有意义。它有O(1)时间插入和成员资格测试,其中链接列表需要与列表长度成比例的时间,而列表的长度在不断增长

    您正在使用额外的数据结构和代码,使您的程序比需要的更复杂、更慢。多思考,少编写代码,学习他人的优秀代码来克服这一问题。我的不是完美的(没有代码是完美的),但这是一个开始

    我使用从每个瓷砖的当前位置到其目标的曼哈顿最大距离作为启发。启发式的选择不会影响解决方案中的步骤数,但它将极大地影响运行时间。例如,h=0将生成蛮力宽度优先搜索

    请注意,对于A*而言,为了提供最佳解决方案,启发式永远不会超过目标的实际最小步数。如果它这样做了,那么解决方案就是发现可能不是最短的。我不是肯定的“倒转”休里斯特有这个属性

    package eightpuzzle;
    
    import java.util.Arrays;
    import java.util.Comparator;
    import java.util.HashSet;
    import java.util.PriorityQueue;
    
    public class EightPuzzle {
    
        // Tiles for successfully completed puzzle.
        static final byte [] goalTiles = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
    
        // A* priority queue.
        final PriorityQueue <State> queue = new PriorityQueue<State>(100, new Comparator<State>() {
            @Override
            public int compare(State a, State b) { 
                return a.priority() - b.priority();
            }
        });
    
        // The closed state set.
        final HashSet <State> closed = new HashSet <State>();
    
        // State of the puzzle including its priority and chain to start state.
        class State {
            final byte [] tiles;    // Tiles left to right, top to bottom.
            final int spaceIndex;   // Index of space (zero) in tiles  
            final int g;            // Number of moves from start.
            final int h;            // Heuristic value (difference from goal)
            final State prev;       // Previous state in solution chain.
    
            // A* priority function (often called F in books).
            int priority() {
                return g + h;
            }
    
            // Build a start state.
            State(byte [] initial) {
                tiles = initial;
                spaceIndex = index(tiles, 0);
                g = 0;
                h = heuristic(tiles);
                prev = null;
            }
    
            // Build a successor to prev by sliding tile from given index.
            State(State prev, int slideFromIndex) {
                tiles = Arrays.copyOf(prev.tiles, prev.tiles.length);
                tiles[prev.spaceIndex] = tiles[slideFromIndex];
                tiles[slideFromIndex] = 0;
                spaceIndex = slideFromIndex;
                g = prev.g + 1;
                h = heuristic(tiles);
                this.prev = prev;
            }
    
            // Return true iif this is the goal state.
            boolean isGoal() {
                return Arrays.equals(tiles, goalTiles);
            }
    
            // Successor states due to south, north, west, and east moves.
            State moveS() { return spaceIndex > 2 ? new State(this, spaceIndex - 3) : null; }       
            State moveN() { return spaceIndex < 6 ? new State(this, spaceIndex + 3) : null; }       
            State moveE() { return spaceIndex % 3 > 0 ? new State(this, spaceIndex - 1) : null; }       
            State moveW() { return spaceIndex % 3 < 2 ? new State(this, spaceIndex + 1) : null; }
    
            // Print this state.
            void print() {
                System.out.println("p = " + priority() + " = g+h = " + g + "+" + h);
                for (int i = 0; i < 9; i += 3)
                    System.out.println(tiles[i] + " " + tiles[i+1] + " " + tiles[i+2]);
            }
    
            // Print the solution chain with start state first.
            void printAll() {
                if (prev != null) prev.printAll();
                System.out.println();
                print();
            }
    
            @Override
            public boolean equals(Object obj) {
                if (obj instanceof State) {
                    State other = (State)obj;
                    return Arrays.equals(tiles, other.tiles);
                }
                return false;
            }
    
            @Override
            public int hashCode() {
                return Arrays.hashCode(tiles);
            }
        }
    
        // Add a valid (non-null and not closed) successor to the A* queue.
        void addSuccessor(State successor) {
            if (successor != null && !closed.contains(successor)) 
                queue.add(successor);
        }
    
        // Run the solver.
        void solve(byte [] initial) {
    
            queue.clear();
            closed.clear();
    
            // Click the stopwatch.
            long start = System.currentTimeMillis();
    
            // Add initial state to queue.
            queue.add(new State(initial));
    
            while (!queue.isEmpty()) {
    
                // Get the lowest priority state.
                State state = queue.poll();
    
                // If it's the goal, we're done.
                if (state.isGoal()) {
                    long elapsed = System.currentTimeMillis() - start;
                    state.printAll();
                    System.out.println("elapsed (ms) = " + elapsed);
                    return;
                }
    
                // Make sure we don't revisit this state.
                closed.add(state);
    
                // Add successors to the queue.
                addSuccessor(state.moveS());
                addSuccessor(state.moveN());
                addSuccessor(state.moveW());
                addSuccessor(state.moveE());
            }
        }
    
        // Return the index of val in given byte array or -1 if none found.
        static int index(byte [] a, int val) {
            for (int i = 0; i < a.length; i++)
                if (a[i] == val) return i;
            return -1;
        }
    
        // Return the Manhatten distance between tiles with indices a and b.
        static int manhattanDistance(int a, int b) {
            return Math.abs(a / 3 - b / 3) + Math.abs(a % 3 - b % 3);
        }
    
        // For our A* heuristic, we just use max of Manhatten distances of all tiles.
        static int heuristic(byte [] tiles) {
            int h = 0;
            for (int i = 0; i < tiles.length; i++)
                if (tiles[i] != 0)
                    h = Math.max(h, manhattanDistance(i, tiles[i]));
            return h;
        }
    
        public static void main(String[] args) {
    
            // This is a harder puzzle than the SO example
            byte [] initial = { 8, 0, 6, 5, 4, 7, 2, 3, 1 };
    
            // This is taken from the SO example.
            //byte [] initial = { 1, 4, 2, 3, 0, 5, 6, 7, 8 };
    
            new EightPuzzle().solve(initial);
        }
    }