建立一个学习曲线来训练doc2vec嵌入

2024-09-18 22:12:22 发布

您现在位置:Python中文网/ 问答频道 /正文

我正在尝试优化用于训练嵌入的历元数。有没有办法为这个过程生成一个学习曲线。你知道吗

例如,我可以为常规监督分类创建学习曲线。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.model_selection import StratifiedShuffleSplit

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()

    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")

    plt.legend(loc="best")
    return plt

title = "Learning Curves (SGDClassifier)"

cv = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0)

estimator = SGDClassifier()
plot_learning_curve(estimator, title, X_all.todense(), y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)

我可以训练嵌入,例如。

from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize


X_tagged = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(X)]

model = Doc2Vec(size=8, alpha=0.05, min_alpha=0.00025, dm =1)

model.build_vocab(X_tagged)

model_title.train(X_tagged, total_examples=model.corpus_count, epochs=50)

但是如何在训练嵌入时创建学习曲线呢。你知道吗

我对训练嵌入没有足够的直觉来解决这个问题。你知道吗


Tags: fromtestimportmodeltitlenptrainplt
1条回答
网友
1楼 · 发布于 2024-09-18 22:12:22

通常情况下,学习曲线会根据不同数量的训练数据绘制模型的性能(比如一些定量分数,比如说‘准确度’)。你知道吗

因此,您需要选择一种方法来为Doc2Vec模型评分。(这可能是通过使用doc向量作为另一个分类器的输入,或者其他什么)然后,您需要用各种不同的训练集大小重新创建Doc2Vec模型,对每个训练集进行评分,并将(corpus_size, score)数据点提供给绘图。你知道吗

请注意,gensim包含一个包装类,用于将Doc2Vec训练步骤放入scikit-learn管道:

https://radimrehurek.com/gensim/sklearn_api/d2vmodel.html

因此,您可以将现有代码中简单的estimator替换为多步骤管道,包括D2VTransformer作为一个步骤。因此,您将以与现有代码高度相似的方式创建学习曲线图。你知道吗

相关问题 更多 >