会话人工智能的GPT2文本预测微调

2024-06-25 06:41:52 发布

您现在位置:Python中文网/ 问答频道 /正文

我正在试验gpt-2模型的条件文本生成,以调整它,使之成为一个好的聊天机器人。我正在使用nsheppard's code在我的自定义数据集中重新训练它。在

我把我的模型训练在一个自定义的对话数据集上,这个数据集是我从facebook数据中提取出来的。我把样本长度改为20,因为它们是交互式条件生成过程中的对话。在

数据集如下:

 How are you 
 Hi Great and you 
 Am also good 
 So you re a graphic designer  
 Yeah 
 How can you contribute to making the game In d graphics aspect 
 Can you show me some of your work if u don t mind  
 Am planning to learn making it a motion type    
 U can go through my photos 
 K 
 Can you make animations for it  
 Flash animations to be specific 
 No please only stable ones 
 Ok

但是,训练结束后,当我试着和它聊天时,它却在完成我的句子,而不是回复它们。在

^{pr2}$

我知道互动_示例.py是为了根据提示来完成句子,但我认为更改数据集会起作用,而且肯定不会起作用。在

在火车.py在

#!/usr/bin/env python3
# Usage:
#  PYTHONPATH=src ./train --dataset <file|directory|glob>

import argparse
import json
import os
import numpy as np
import tensorflow as tf
import time
import tqdm
from tensorflow.core.protobuf import rewriter_config_pb2

import model, sample, encoder
from load_dataset import load_dataset, Sampler
from accumulate import AccumulatingOptimizer
import memory_saving_gradients

CHECKPOINT_DIR = 'checkpoint'
SAMPLE_DIR = 'samples'


parser = argparse.ArgumentParser(
    description='Fine-tune GPT-2 on your custom dataset.',
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--dataset', metavar='PATH', type=str, required=True, help='Input file, directory, or glob pattern (utf-8 text, or preencoded .npz files).')
parser.add_argument('--model_name', metavar='MODEL', type=str, default='117M', help='Pretrained model name')
parser.add_argument('--combine', metavar='CHARS', type=int, default=50000, help='Concatenate input files with <|endoftext|> separator into chunks of this minimum size')

parser.add_argument('--batch_size', metavar='SIZE', type=int, default=1, help='Batch size')
parser.add_argument('--learning_rate', metavar='LR', type=float, default=0.00002, help='Learning rate for Adam')
parser.add_argument('--accumulate_gradients', metavar='N', type=int, default=1, help='Accumulate gradients across N minibatches.')
parser.add_argument('--memory_saving_gradients', default=False, action='store_true', help='Use gradient checkpointing to reduce vram usage.')
parser.add_argument('--only_train_transformer_layers', default=False, action='store_true', help='Restrict training to the transformer blocks.')
parser.add_argument('--optimizer', type=str, default='adam', help='Optimizer. <adam|sgd>.')
parser.add_argument('--noise', type=float, default=0.0, help='Add noise to input training data to regularize against typos.')

parser.add_argument('--top_k', type=int, default=40, help='K for top-k sampling.')
parser.add_argument('--top_p', type=float, default=0.0, help='P for top-p sampling. Overrides top_k if set > 0.')

parser.add_argument('--restore_from', type=str, default='latest', help='Either "latest", "fresh", or a path to a checkpoint file')
parser.add_argument('--run_name', type=str, default='run1', help='Run id. Name of subdirectory in checkpoint/ and samples/')
parser.add_argument('--sample_every', metavar='N', type=int, default=100, help='Generate samples every N steps')
parser.add_argument('--sample_length', metavar='TOKENS', type=int, default=1023, help='Sample this many tokens')
parser.add_argument('--sample_num', metavar='N', type=int, default=1, help='Generate this many samples')
parser.add_argument('--save_every', metavar='N', type=int, default=1000, help='Write a checkpoint every N steps')

parser.add_argument('--val_dataset', metavar='PATH', type=str, default=None, help='Dataset for validation loss, defaults to --dataset.')
parser.add_argument('--val_batch_size', metavar='SIZE', type=int, default=2, help='Batch size for validation.')
parser.add_argument('--val_batch_count', metavar='N', type=int, default=40, help='Number of batches for validation.')
parser.add_argument('--val_every', metavar='STEPS', type=int, default=0, help='Calculate validation loss every STEPS steps.')


def maketree(path):
    try:
        os.makedirs(path)
    except:
        pass


def randomize(context, hparams, p):
    if p > 0:
        mask = tf.random.uniform(shape=tf.shape(context)) < p
        noise = tf.random.uniform(shape=tf.shape(context), minval=0, maxval=hparams.n_vocab, dtype=tf.int32)
        return tf.where(mask, noise, context)
    else:
        return context


def main():
    args = parser.parse_args()
    enc = encoder.get_encoder(args.model_name)
    hparams = model.default_hparams()
    with open(os.path.join('models', args.model_name, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if args.sample_length > hparams.n_ctx:
        raise ValueError(
            "Can't get samples longer than window size: %s" % hparams.n_ctx)

    if args.model_name == '345M':
        args.memory_saving_gradients = True
        if args.optimizer == 'adam':
            args.only_train_transformer_layers = True

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.graph_options.rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.OFF
    with tf.Session(config=config) as sess:
        context = tf.placeholder(tf.int32, [args.batch_size, None])
        context_in = randomize(context, hparams, args.noise)
        output = model.model(hparams=hparams, X=context_in)
        loss = tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=context[:, 1:], logits=output['logits'][:, :-1]))

        if args.val_every > 0:
            val_context = tf.placeholder(tf.int32, [args.val_batch_size, None])
            val_output = model.model(hparams=hparams, X=val_context)
            val_loss = tf.reduce_mean(
                tf.nn.sparse_softmax_cross_entropy_with_logits(
                    labels=val_context[:, 1:], logits=val_output['logits'][:, :-1]))
            val_loss_summary = tf.summary.scalar('val_loss', val_loss)


        tf_sample = sample.sample_sequence(
            hparams=hparams,
            length=args.sample_length,
            context=context,
            batch_size=args.batch_size,
            temperature=1.0,
            top_k=args.top_k,
            top_p=args.top_p)

        all_vars = [v for v in tf.trainable_variables() if 'model' in v.name]
        train_vars = [v for v in all_vars if '/h' in v.name] if args.only_train_transformer_layers else all_vars

        if args.optimizer == 'adam':
            opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
        elif args.optimizer == 'sgd':
            opt = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
        else:
            exit('Bad optimizer:', args.optimizer)

        if args.accumulate_gradients > 1:
            if args.memory_saving_gradients:
                exit("Memory saving gradients are not implemented for gradient accumulation yet.")
            opt = AccumulatingOptimizer(
                opt=opt,
                var_list=train_vars)
            opt_reset = opt.reset()
            opt_compute = opt.compute_gradients(loss)
            opt_apply = opt.apply_gradients()
            summary_loss = tf.summary.scalar('loss', opt_apply)
        else:
            if args.memory_saving_gradients:
                opt_grads = memory_saving_gradients.gradients(loss, train_vars)
            else:
                opt_grads = tf.gradients(loss, train_vars)
            opt_grads = list(zip(opt_grads, train_vars))
            opt_apply = opt.apply_gradients(opt_grads)
            summary_loss = tf.summary.scalar('loss', loss)

        summary_lr = tf.summary.scalar('learning_rate', args.learning_rate)
        summaries = tf.summary.merge([summary_lr, summary_loss])

        summary_log = tf.summary.FileWriter(
            os.path.join(CHECKPOINT_DIR, args.run_name))

        saver = tf.train.Saver(
            var_list=all_vars,
            max_to_keep=5,
            keep_checkpoint_every_n_hours=2)
        sess.run(tf.global_variables_initializer())

        if args.restore_from == 'latest':
            ckpt = tf.train.latest_checkpoint(
                os.path.join(CHECKPOINT_DIR, args.run_name))
            if ckpt is None:
                # Get fresh GPT weights if new run.
                ckpt = tf.train.latest_checkpoint(
                    os.path.join('models', args.model_name))
        elif args.restore_from == 'fresh':
            ckpt = tf.train.latest_checkpoint(
                os.path.join('models', args.model_name))
        else:
            ckpt = tf.train.latest_checkpoint(args.restore_from)
        print('Loading checkpoint', ckpt)
        saver.restore(sess, ckpt)

        print('Loading dataset...')
        chunks = load_dataset(enc, args.dataset, args.combine)
        data_sampler = Sampler(chunks)
        if args.val_every > 0:
            val_chunks = load_dataset(enc, args.val_dataset, args.combine) if args.val_dataset else chunks
        print('dataset has', data_sampler.total_size, 'tokens')
        print('Training...')

        if args.val_every > 0:
            # Sample from validation set once with fixed seed to make
            # it deterministic during training as well as across runs.
            val_data_sampler = Sampler(val_chunks, seed=1)
            val_batches = [[val_data_sampler.sample(1024) for _ in range(args.val_batch_size)]
                           for _ in range(args.val_batch_count)]

        counter = 1
        counter_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'counter')
        if os.path.exists(counter_path):
            # Load the step number if we're resuming a run
            # Add 1 so we don't immediately try to save again
            with open(counter_path, 'r') as fp:
                counter = int(fp.read()) + 1

        def save():
            maketree(os.path.join(CHECKPOINT_DIR, args.run_name))
            print(
                'Saving',
                os.path.join(CHECKPOINT_DIR, args.run_name,
                             'model-{}').format(counter))
            saver.save(
                sess,
                os.path.join(CHECKPOINT_DIR, args.run_name, 'model'),
                global_step=counter)
            with open(counter_path, 'w') as fp:
                fp.write(str(counter) + '\n')

        def generate_samples():
            print('Generating samples...')
            context_tokens = data_sampler.sample(1)
            all_text = []
            index = 0
            while index < args.sample_num:
                out = sess.run(
                    tf_sample,
                    feed_dict={context: args.batch_size * [context_tokens]})
                for i in range(min(args.sample_num - index, args.batch_size)):
                    text = enc.decode(out[i])
                    text = '======== SAMPLE {} ========\n{}\n'.format(
                        index + 1, text)
                    all_text.append(text)
                    index += 1
            print(text)
            maketree(os.path.join(SAMPLE_DIR, args.run_name))
            with open(
                    os.path.join(SAMPLE_DIR, args.run_name,
                                 'samples-{}').format(counter), 'w') as fp:
                fp.write('\n'.join(all_text))

        def validation():
            print('Calculating validation loss...')
            losses = []
            for batch in tqdm.tqdm(val_batches):
                losses.append(sess.run(val_loss, feed_dict={val_context: batch}))
            v_val_loss = np.mean(losses)
            v_summary = sess.run(val_loss_summary, feed_dict={val_loss: v_val_loss})
            summary_log.add_summary(v_summary, counter)
            summary_log.flush()
            print(
                '[{counter} | {time:2.2f}] validation loss = {loss:2.2f}'
                .format(
                    counter=counter,
                    time=time.time() - start_time,
                    loss=v_val_loss))

        def sample_batch():
            return [data_sampler.sample(1024) for _ in range(args.batch_size)]


        avg_loss = (0.0, 0.0)
        start_time = time.time()

        try:
            while True:
                if counter % args.save_every == 0:
                    save()
                if counter % args.sample_every == 0:
                    generate_samples()
                if args.val_every > 0 and (counter % args.val_every == 0 or counter == 1):
                    validation()

                if args.accumulate_gradients > 1:
                    sess.run(opt_reset)
                    for _ in range(args.accumulate_gradients):
                        sess.run(
                            opt_compute, feed_dict={context: sample_batch()})
                    (v_loss, v_summary) = sess.run((opt_apply, summaries))
                else:
                    (_, v_loss, v_summary) = sess.run(
                        (opt_apply, loss, summaries),
                        feed_dict={context: sample_batch()})

                summary_log.add_summary(v_summary, counter)

                avg_loss = (avg_loss[0] * 0.99 + v_loss,
                            avg_loss[1] * 0.99 + 1.0)

                print(
                    '[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
                    .format(
                        counter=counter,
                        time=time.time() - start_time,
                        loss=v_loss,
                        avg=avg_loss[0] / avg_loss[1]))

                counter += 1
        except keyboardInterrupt:
            print('interrupted')
            save()


if __name__ == '__main__':
    main()

在样品.py在

import tensorflow as tf

import model

def top_k_logits(logits, k):
    if k == 0:
        # no truncation
        return logits

    def _top_k():
        values, _ = tf.nn.top_k(logits, k=k)
        min_values = values[:, -1, tf.newaxis]
        return tf.where(
            logits < min_values,
            tf.ones_like(logits, dtype=logits.dtype) * -1e10,
            logits,
        )
    return tf.cond(
       tf.equal(k, 0),
       lambda: logits,
       lambda: _top_k(),
    )


def top_p_logits(logits, p):
    with tf.variable_scope('top_p_logits'):
        logits_sort = tf.sort(logits, direction='DESCENDING')
        probs_sort = tf.nn.softmax(logits_sort)
        probs_sums = tf.cumsum(probs_sort, axis=1, exclusive=True)
        logits_masked = tf.where(probs_sums < p, logits_sort, tf.ones_like(logits_sort)*1000) # [batchsize, vocab]
        min_logits = tf.reduce_min(logits_masked, axis=1, keepdims=True) # [batchsize, 1]
        return tf.where(
            logits < min_logits,
            tf.ones_like(logits, dtype=logits.dtype) * -1e10,
            logits,
        )


def sample_sequence(*, hparams, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, top_p=0.0):
    if start_token is None:
        assert context is not None, 'Specify exactly one of start_token and context!'
    else:
        assert context is None, 'Specify exactly one of start_token and context!'
        context = tf.fill([batch_size, 1], start_token)

    def step(hparams, tokens, past=None):
        lm_output = model.model(hparams=hparams, X=tokens, past=past, reuse=tf.AUTO_REUSE)

        logits = lm_output['logits'][:, :, :hparams.n_vocab]
        presents = lm_output['present']
        presents.set_shape(model.past_shape(hparams=hparams, batch_size=batch_size))
        return {
            'logits': logits,
            'presents': presents,
        }

    with tf.name_scope('sample_sequence'):
        # Don't feed the last context token -- leave that to the loop below
        # TODO: Would be slightly faster if we called step on the entire context,
        # rather than leaving the last token transformer calculation to the while loop.
        context_output = step(hparams, context[:, :-1])

        def body(past, prev, output):
            next_outputs = step(hparams, prev[:, tf.newaxis], past=past)
            logits = next_outputs['logits'][:, -1, :]  / tf.to_float(temperature)
            if top_p > 0.0:
                logits = top_p_logits(logits, p=top_p)
            else:
                logits = top_k_logits(logits, k=top_k)
            samples = tf.multinomial(logits, num_samples=1, output_dtype=tf.int32)
            return [
                tf.concat([past, next_outputs['presents']], axis=-2),
                tf.squeeze(samples, axis=[1]),
                tf.concat([output, samples], axis=1),
            ]

        def cond(*args):
            return True

        _, _, tokens = tf.while_loop(
            cond=cond, body=body,
            maximum_iterations=length,
            loop_vars=[
                context_output['presents'],
                context[:, -1],
                context,
            ],
            shape_invariants=[
                tf.TensorShape(model.past_shape(hparams=hparams, batch_size=batch_size)),
                tf.TensorShape([batch_size]),
                tf.TensorShape([batch_size, None]),
            ],
            back_prop=False,
        )

        return tokens

交互式条件_示例.py在

#!/usr/bin/env python3

import fire
import json
import os
import numpy as np
import tensorflow as tf

import model, sample, encoder

def interact_model(
    model_name='chatbot',
    seed=None,
    nsamples=1,
    batch_size=1,
    length=20,
    temperature=1,
    top_k=0,
    top_p=0.0
):
    """
    Interactively run the model
    :model_name=chatbot : String, which model to use
    :seed=None : Integer seed for random number generators, fix seed to reproduce
     results
    :nsamples=1 : Number of samples to return total
    :batch_size=1 : Number of batches (only affects speed/memory).  Must divide nsamples.
    :length=None : Number of tokens in generated text, if None (default), is
     determined by model hyperparameters
    :temperature=1 : Float value controlling randomness in boltzmann
     distribution. Lower temperature results in less random completions. As the
     temperature approaches zero, the model will become deterministic and
     repetitive. Higher temperature results in more random completions.
    :top_k=0 : Integer value controlling diversity. 1 means only 1 word is
     considered for each step (token), resulting in deterministic completions,
     while 40 means 40 words are considered at each step. 0 (default) is a
     special setting meaning no restrictions. 40 generally is a good value.
    :top_p=0.0 : Float value controlling diversity. Implements nucleus sampling,
     overriding top_k if set to a value > 0. A good setting is 0.9.
    """
    if batch_size is None:
        batch_size = 1
    assert nsamples % batch_size == 0

    enc = encoder.get_encoder(model_name)
    hparams = model.default_hparams()
    with open(os.path.join('models', model_name, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if length is None:
        length = hparams.n_ctx // 2
    elif length > hparams.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)

    with tf.Session(graph=tf.Graph()) as sess:
        context = tf.placeholder(tf.int32, [batch_size, None])
        np.random.seed(seed)
        tf.set_random_seed(seed)
        output = sample.sample_sequence(
            hparams=hparams, length=length,
            context=context,
            batch_size=batch_size,
            temperature=temperature, top_k=top_k, top_p=top_p
        )

        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name))
        saver.restore(sess, ckpt)

        while True:
            raw_text = input("User >>> ")
            while not raw_text:
                print('Prompt should not be empty!')
                raw_text = input("User >>> ")
            context_tokens = enc.encode(raw_text)
            generated = 0
            for _ in range(nsamples // batch_size):
                out = sess.run(output, feed_dict={
                    context: [context_tokens for _ in range(batch_size)]
                })[:, len(context_tokens):]
                for i in range(batch_size):
                    generated += 1
                    text = enc.decode(out[i])
                    print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
                    print(text)
            print("=" * 80)

if __name__ == '__main__':
    fire.Fire(interact_model)

如何调整代码使其像聊天机器人一样工作?我猜这和上下文有关样品.py,但我不确定这将如何运作。在


Tags: samplenamedefaultsizemodeliftftop
2条回答

问题是,所有模型看到的都是查看您给它的一系列文本,并试图准确地预测下一个最有可能的/标记。它不是一个编解码器架构。你需要的是微调聊天机器人的架构建筑学我找到的唯一一个实现是在这里。但这是在Pythorch完成的,所以我担心这不是你想要的。在

https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313

我知道这是一个老问题,但我已经成功地调试了GPT-2上的许多Q&A风格的数据集,并有一个建议,将对未来发现这个问题的人有用。在

GPT-2读取非结构化文本数据,但它非常擅长推断和遵守数据中的结构。你的问题基本上是你没有用GPT-2能理解的标识符来结束你的输入行,所以它继续这个句子。在

解决这个问题的一个简单方法是对数据集进行注释。实际上,任何带有停止/启动标记的东西都可以工作,但是您还应该注释说话人身份。我会做这样的事情:

A: How are you <EOL>
B: Hi Great and you <EOL>
A: Am also good <EOL>
B: So you re a graphic designer <EOL>
B: Another line from B <EOL>

这种方法的另一个好处是GPT-2将学习多行输入/输出,以及两个对话者的不同身份。在

相关问题 更多 >