xgboost中的Poisson回归在低频下失败

2024-09-28 22:23:15 发布

您现在位置:Python中文网/ 问答频道 /正文

我试图在xgboost中实现一个增强的Poisson回归模型,但是我发现结果在低频率下是有偏差的。为了说明这一点,下面是一些我认为复制了这个问题的Python代码:

import numpy as np
import pandas as pd
import xgboost as xgb

def get_preds(mult):
    # generate toy dataset for illustration
    # 4 observations with linearly increasing frequencies
    # the frequencies are scaled by `mult`
    dmat = xgb.DMatrix(data=np.array([[0, 0], [0, 1], [1, 0], [1, 1]]),
                       label=[i*mult for i in [1, 2, 3, 4]],
                       weight=[1000, 1000, 1000, 1000])

    # train a poisson booster on the toy data
    bst = xgb.train(
        params={"objective": "count:poisson"},
        dtrain=dmat,
        num_boost_round=100000,
        early_stopping_rounds=5,
        evals=[(dmat, "train")],
        verbose_eval=False)

    # return fitted frequencies after reversing scaling
    return bst.predict(dmat)/mult

# test multipliers in the range [10**(-8), 10**1]
# display fitted frequencies 
mults = [10**i for i in range(-8, 1)]
df = pd.DataFrame(np.round(np.vstack([get_preds(m) for m in mults]), 0))
df.index = mults
df.columns = ["(0, 0)", "(0, 1)", "(1, 0)", "(1, 1)"]
df

# --- result ---
#               (0, 0)   (0, 1)   (1, 0)   (1, 1)
#1.000000e-08  11598.0  11598.0  11598.0  11598.0
#1.000000e-07   1161.0   1161.0   1161.0   1161.0
#1.000000e-06    118.0    118.0    118.0    118.0
#1.000000e-05     12.0     12.0     12.0     12.0
#1.000000e-04      2.0      2.0      3.0      3.0
#1.000000e-03      1.0      2.0      3.0      4.0
#1.000000e-02      1.0      2.0      3.0      4.0
#1.000000e-01      1.0      2.0      3.0      4.0
#1.000000e+00      1.0      2.0      3.0      4.0

请注意,在低频率下,预测似乎会爆炸。这可能与Poisson-lambda*权重下降到1以下有关(事实上,将权重增加到1000以上确实会将“爆炸”转移到较低的频率),但我仍然希望预测接近平均训练频率(2.5)。另外(在上面的例子中没有显示),减少eta似乎会增加预测中的偏差量。在

什么会导致这种情况发生?是否有一个可以减轻影响的参数?在


Tags: theinimportdfforasnptrain
1条回答
网友
1楼 · 发布于 2024-09-28 22:23:15

经过一番挖掘,我找到了解决办法。在这里记录,以防其他人遇到相同的问题。结果我需要加上一个偏移项,等于平均频率的(自然)对数。如果这还不是很明显,那是因为初始预测从0.5的频率开始,并且需要许多增强迭代来将预测重新调整到平均频率。在

请参阅下面的代码以获取对玩具示例的更新。正如我在最初的问题中建议的那样,现在的预测在较低的尺度上接近平均频率(2.5)。在

import numpy as np
import pandas as pd
import xgboost as xgb

def get_preds(mult):
    # generate toy dataset for illustration
    # 4 observations with linearly increasing frequencies
    # the frequencies are scaled by `mult`
    dmat = xgb.DMatrix(data=np.array([[0, 0], [0, 1], [1, 0], [1, 1]]),
                       label=[i*mult for i in [1, 2, 3, 4]],
                       weight=[1000, 1000, 1000, 1000])

    ## adding an offset term equal to the log of the mean frequency
    offset = np.log(np.mean([i*mult for i in [1, 2, 3, 4]]))
    dmat.set_base_margin(np.repeat(offset, 4))

    # train a poisson booster on the toy data
    bst = xgb.train(
        params={"objective": "count:poisson"},
        dtrain=dmat,
        num_boost_round=100000,
        early_stopping_rounds=5,
        evals=[(dmat, "train")],
        verbose_eval=False)

    # return fitted frequencies after reversing scaling
    return bst.predict(dmat)/mult

# test multipliers in the range [10**(-8), 10**1]
# display fitted frequencies 
mults = [10**i for i in range(-8, 1)]
## round to 1 decimal point to show the result approaches 2.5
df = pd.DataFrame(np.round(np.vstack([get_preds(m) for m in mults]), 1))
df.index = mults
df.columns = ["(0, 0)", "(0, 1)", "(1, 0)", "(1, 1)"]
df

#  - result  -
#              (0, 0)  (0, 1)  (1, 0)  (1, 1)
#1.000000e-08     2.5     2.5     2.5     2.5
#1.000000e-07     2.5     2.5     2.5     2.5
#1.000000e-06     2.5     2.5     2.5     2.5
#1.000000e-05     2.5     2.5     2.5     2.5
#1.000000e-04     2.4     2.5     2.5     2.6
#1.000000e-03     1.0     2.0     3.0     4.0
#1.000000e-02     1.0     2.0     3.0     4.0
#1.000000e-01     1.0     2.0     3.0     4.0
#1.000000e+00     1.0     2.0     3.0     4.0

相关问题 更多 >