Python中文网

Python+Tensorflow机器学习实战

cnpython401

这本Python+Tensorflow机器学习实战图书,是2019-05-01月由清华大学出版社所出版的,著作者信息: 李鸥 著,本版是第1次印刷, ISBN:9787302522607,品牌:清华大学出版社(TSINGHUA UNIVERSITY PRESS), 这本书的包装是16开平装,所用纸张为胶版纸,全书页数237,字数有35万8000字, 是本值得推荐的Python软件开发图书。

此书内容摘要

本书通过开发实例和项目案例,详细介绍TensorFlow 开发所涉及的主要内容。书中的每个知识点都通过实例进行通俗易懂的讲解,便于读者轻松掌握有关TensorFlow 开发的内容和技巧,并能够得心应手地使用TensorFlow 进行开发。
本书内容共分为11 章,首先介绍TensorFlow 的基本知识,通过实例逐步深入地讲解线性回归、支持向量机、神经网络算法和无监督学习等常见的机器学习算法模型。然后通过TensorFlow 在自然语言文本处理、语音识别、图形识别和人脸识别等方面的成功应用讲解TensorFlow 的实际开发过程。
本书适合有一定Python 基础的工程师阅读;对于有一定基础的读者,可通过本书快速地将TensorFlow 应用到实际开发中;对于高等院校的学生和培训机构的学员,本书也是入门和实践机器学习的优秀教材。

关于此书作者

李鸥,计算机科学硕士,曾就职支f宝,现任职某央企研究院。致力于人工智能的研究,对机器学习的原理、开发框架及其在不同场景中的应用有浓烈兴趣,在图形识别、文本识别、语音识别、数据挖掘方面有丰富实践经验,参与基于机器学习的用户行为分析及某省部级项目研究。

编辑们的推荐

编辑推荐:

很系统:讲解19种机器学习经典算法,依次击破重难点

很图示:书中包括113张图解说明,方便读者理解

很实用:囊括文本识别、语音识别、图形识别、人脸认识等

很实战:31个实例、13个案例,详解TensorFlow机器学习


Python+Tensorflow机器学习实战图书的目录


目 录

第1章机器学习概述

1.1人工智能 1

1.2机器学习 2

1.2.1机器学习的发展 2

1.2.2机器学习的分类 3

1.2.3机器学习的经典算法 4

1.2.4机器学习入门 6

1.3TensorFlow简介 6

1.3.1主流框架的对比 7

1.3.2TensorFlow的发展 9

1.3.3使用TensorFlow的公司 10

1.4TensorFlow环境准备 10

1.4.1Windows环境 11

1.4.2Linux环境 21

1.4.3Mac OS环境 22

1.5常用的第三方模块 22

1.6本章小结 23

第2章TensorFlow基础

2.1TensorFlow基础框架 24

2.1.1系统框架 24

2.1.2系统的特性 26

2.1.3编程模型 27

2.1.4编程特点 28

2.2TensorFlow源代码结构分析 30

2.2.1源代码下载 30

2.2.2TensorFlow目录结构 30

2.2.3重点目录 31

2.3TensorFlow基本概念 33

2.3.1Tensor 33

2.3.2Variable 34

2.3.3Placeholder 35

2.3.4Session 36

2.3.5 Operation 36

2.3.6Queue 37

2.3.7QueueRunner 38

2.3.8Coordinator 39

2.4第一个TensorFlow示例 40

2.4.1典型应用 41

2.4.2运行TensorFlow示例 43

2.5TensorBoard可视化 45

2.5.1SCALARS面板 45

2.5.2GRAPHS面板 47

2.5.3IMAGES面板 48

2.5.4AUDIO面板 49

2.5.5DISTRIBUTIONS面板 49

2.5.6HISTOGRAMS面板 49

2.5.7PROJECTOR面板 50

2.6本章小结 50

第3章TensorFlow进阶

3.1加载数据 51

3.1.1预加载数据 51

3.1.2填充数据 51

3.1.3从CSV文件读取数据 52

3.1.4读取TFRecords数据 54

3.2存储和加载模型 58

3.2.1存储模型 58

3.2.2加载模型 59

3.3评估和优化模型 60

3.3.1评估指标的介绍与使用 60

3.3.2模型调优的主要方法 61

3.4本章小结 63

第4章线性模型

4.1常见的线性模型 64

4.2一元线性回归 65

4.2.1生成训练数据 65

4.2.2定义训练模型 66

4.2.3进行数据训练 66

4.2.4运行总结 67

4.3多元线性回归 68

4.3.1二元线性回归算法简介 68

4.3.2生成训练数据 69

4.3.3定义训练模型 70

4.3.4进行数据训练 70

4.3.5运行总结 70

4.4逻辑回归 71

4.4.1逻辑回归算法简介 71

4.4.2生成训练数据 73

4.4.3定义训练模型 74

4.4.4进行数据训练 74

4.4.5运行总结 75

4.5本章小结 76

第5章支持向量机

5.1支持向量机简介 77

5.1.1SVM基本型 77

5.1.2SVM核函数简介 79

5.2拟合线性回归 80

5.2.1生成训练数据 80

5.2.2定义训练模型 81

5.2.3进行数据训练 81

5.2.4运行总结 82

5.3拟合逻辑回归 83

5.3.1生成训练数据 83

5.3.2定义训练模型 84

5.3.3进行数据训练 85

5.3.4运行总结 86

5.4非线性二值分类 87

5.4.1生成训练数据 87

5.4.2定义训练模型 88

5.4.3进行数据训练 89

5.4.4运行总结 89

5.5非线性多类分类 91

5.5.1生成训练数据 91

5.5.2定义训练模型 92

5.5.3进行数据训练 93

5.5.4运行总结 94

5.6本章小结 95

第6章神经网络

6.1神经网络简介 96

6.1.1神经元模型 97

6.1.2神经网络层 100

6.2拟合线性回归问题 102

6.2.1生成训练数据 102

6.2.2定义神经网络模型 102

6.2.3进行数据训练 103

6.2.4运行总结 104

6.3MNIST数据集 104

6.3.1MNIST数据集简介 105

6.3.2数据集图片文件 105

6.3.3数据集标记文件 106

6.4全连接神经网络 106

6.4.1加载MNIST训练数据 106

6.4.2构建神经网络模型 107

6.4.3进行数据训练 108

6.4.4评估模型 109

6.4.5构建多层神经网络模型 110

6.4.6可视化多层神经网络模型 111

6.5卷积神经网络 113

6.5.1卷积神经网络简介 114

6.5.2卷积层 115

6.5.3池化层 119

6.5.4全连接神经网络层 121

6.5.5卷积神经网络的发展 121

6.6通过卷积神经网络处理MNIST 122

6.6.1加载MNIST训练数据 122

6.6.2构建卷积神经网络模型 123

6.6.3进行数据训练 127

6.6.4评估模型 127

6.7循环神经网络 128

6.7.1循环神经网络简介 128

6.7.2基本循环神经网络 129

6.7.3长短期记忆网络 131

6.7.4双向循环神经网络简介 134

6.8通过循环神经网络处理MNIST 135

6.8.1加载MNIST训练数据 136

6.8.2构建神经网络模型 136

6.8.3进行数据训练及评估模型 137

6.9递归神经网络 138

6.9.1递归神经网络简介 138

6.9.2递归神经网络的应用 139

6.10本章小结 140

第7章无监督学习

7.1无监督学习简介 141

7.1.1聚类模型 141

7.1.2自编码网络模型 142

7.2K均值聚类 142

7.2.1K均值聚类算法简介 142

7.2.2K均值聚类算法实践 144

7.3自编码网络 147

7.3.1自编码网络简介 147

7.3.2自编码网络实践 148

7.4本章小结 151

第8章自然语言文本处理

8.1自然语言文本处理简介 152

8.1.1处理模型的选择 152

8.1.2文本映射 153

8.1.3TensorFlow文本处理的一般步骤 156

8.2学写唐诗 157

8.2.1数据预处理 157

8.2.2生成训练模型 158

8.2.3评估模型 160

8.3智能影评分类 163

8.3.1CBOW嵌套模型 163

8.3.2构建影评分类模型 167

8.3.3训练评估影评分类模型 169

8.4智能聊天机器人 170

8.4.1Attention机制的Seq2Seq模型 170

8.4.2数据预处理 173

8.4.3构建智能聊天机器人模型 174

8.4.4训练模型 177

8.4.5评估模型 179

8.5本章小结 180

第9章语音处理

9.1语音处理简介 181

9.1.1语音识别模型 181

9.1.2语音合成模型 183

9.2听懂数字 183

9.2.1数据预处理 184

9.2.2构建识别模型 185

9.2.3训练模型 185

9.2.4评估模型 185

9.3听懂中文 185

9.3.1数据预处理 186

9.3.2构建识别模型 188

9.3.3训练模型 191

9.3.4评估模型 191

9.4语音合成 192

9.4.1Tacotron模型 192

9.4.2编码器模块 193

9.4.3解码器模块 196

9.4.4后处理模块 197

9.5本章小结 197

第10章图像处理

10.1机器学习的图像处理简介 198

10.1.1图像修复 198

10.1.2图像物体识别与检测 199

10.1.3图像问答 201

10.2图像物体识别 201

10.2.1数据预处理 201

10.2.2生成训练模型 203

10.2.3训练模型 205

10.2.4评估模型 206

10.3图片验证码识别 208

10.3.1验证码的生成 208

10.3.2数据预处理 209

10.3.3生成训练模型 211

10.3.4训练模型 212

10.3.5评估模型 213

10.4图像物体检测 214

10.4.1物体检测系统 214

10.4.2物体检测系统实践 215

10.5看图说话 217

10.5.1看图说话原理 218

10.5.2看图说话模型的构建 218

10.5.3看图说话模型的训练 220

10.5.4评估模型 221

10.6本章小结 222

第11章人脸识别

11.1人脸识别简介 223

11.1.1人脸图像采集 223

11.1.2人脸检测 224

11.1.3人脸图像预处理 224

11.1.4人脸关键点检测 224

11.1.5人脸特征提取 224

11.1.6人脸比对 225

11.1.7人脸属性检测 225

11.2人脸验证 225

11.2.1数据预处理 226

11.2.2运行FaceNet模型 226

11.2.3实现人脸验证 229

11.3性别和年龄的识别 231

11.3.1Adience数据集 231

11.3.2数据预处理 232

11.3.3生成训练模型 233

11.3.4训练模型 235

11.3.5评估模型 236

11.4本章小结 237


部分内容试读

2016年3月,谷歌公司的AlphaGo与职业九段棋手李世石进行了围棋人机大战,最终AlphaGo以4比1的总比分获胜,这引起了全球对人工智能的热议。同时,百度推出的无人驾驶,科大讯飞推出的“语音识别”,以及高铁进站的人脸识别的广泛应用,将机器学习转变为信息科技企业的研究与应用的常见内容,这也让我们的日常生活更为便捷。

其实,机器学习已经走过符号主义时代、概率论时代、联结主义时代,从最初的仅是专家研究的数学理论、经典算法,逐步发展并蜕变为可以为大部分项目直接使用的平台框架。

2015年11月9日,谷歌在GitHub上开源了TensorFlow框架,该框架是谷歌的机器学习框架,具有高度的灵活性和可移植性。在TensorFlow中,将各种经典算法特别是神经网络模型组织成一个平台,能够让我们更便捷地在目标领域实践机器学习算法。

TensorFlow作为最流行的机器学习框架之一,具有对Python语言的良好支持,这有效降低了进行机器学习开发的门槛,让更多的工程师能够以低成本投身到人工智能的浪潮中。TensorFlow框架能够支持CPU、GPU或Google TPU等硬件环境,让机器学习能够便捷地移植到各种环境中。

《Python+TensorFlow机器学习实战》将全面阐述TensorFlow机器学习框架的原理、概念,详细讲解线性回归、支持向量机、神经网络算法和无监督学习等常见的机器学习算法模型,并通过TensorFlow在自然语言文本处理、语音识别、图形识别和人脸识别等方面的成功应用来讲解TensorFlow的实际开发过程。《Python+TensorFlow机器学习实战》在语言上力求幽默直白、轻松活泼,避免云山雾罩、晦涩难懂。在讲解形式上图文并茂,由浅入深,抽丝剥茧。通过阅读《Python+TensorFlow机器学习实战》,读者可以少走很多弯路,快速上手TensorFlow开发。

《Python+TensorFlow机器学习实战》特色

1. 内容丰富、全面

全书内容共分11章,从机器学习概述到TensorFlow基础,再到实际应用,内容几乎涵盖TensorFlow开发的所有方面。

2. 实例丰富、案例典型、实用性强

《Python+TensorFlow机器学习实战》对每一个知识点都以实际应用的形式进行讲解,帮助读者理解和掌握相关的开发技术。《Python+TensorFlow机器学习实战》还在最后提供了TensorFlow在图形识别、文本识别和语音识别等方面成功应用的实例,帮助读者提高实战水平。

3. 紧跟技术趋势

《Python+TensorFlow机器学习实战》针对目前发布的TensorFlow的常用版本1.3进行讲解,并涉及1.6版本的变化,摒弃了以前版本中不再使用的功能,以适应技术的发展趋势。

4. 举一反三

《Python+TensorFlow机器学习实战》写作由浅入深、从易到难,并注意知识点之间的联系,让读者掌握一个知识点后,能够触类旁通、举一反三,编写相应的代码。

《Python+TensorFlow机器学习实战》内容及体系结构

第1章简单讲述机器学习的发展、分类以及经典算法,介绍TensorFlow的发展和优势,并详细介绍不同操作系统环境下TensorFlow开发环境的准备过程。

第2章讲解TensorFlow的基础知识,包括基础框架、源代码结构、基础概念,并通过运行一个官方示例展示了可视化的调试。

第3章讲解TensorFlow在实际进行机器学习时的加载训练数据、构建训练模型、进行数据训练、评估和预测四大步骤中常用的方法和技巧。

第4章详细讲解机器学习算法中最基础的线性模型:回归模型和逻辑回归模型。

第5章讲解TensorFlow中支持向量机算法的基本原理及核函数,并使用SVM完成线性回归拟合、逻辑回归分类以及非线性数据分类等。

第6章对神经网络模型进行详细介绍,讲解神经元模型、神经网络层等基本原理,并讲解全连接神经网络、卷积神经网络和循环神经网络等主要神经网络的原理与计算过程,并在TensorFlow中使用具体案例讲解通用神经网络层的构建、卷积层的使用、池化层的使用、循环神经元的构建以及损失函数的选择等。

第7章主要介绍无监督学习的概念和经典算法。

第8章讲解TensorFlow在自然语言文本处理中的应用,如学写唐诗、影评分类以及智能聊天机器人等。

第9章讲解TensorFlow在语音处理方面的应用,如听懂数字、听懂中文以及语音合成等。

第10章讲解TensorFlow在图像处理方面的应用,如图像处理中的物体识别与检测、图像描述。

第11章讲解TensorFlow在人脸识别方面的应用,介绍人脸识别的原理和分类、人脸比对以及从人脸判别性别和年龄。

《Python+TensorFlow机器学习实战》读者对象

? 初中级程序员。

? 高等院校师生。

? 培训机构学员。

? 希望使用机器学习的工程师。

致谢

在《Python+TensorFlow机器学习实战》的成稿过程中,熊诺亚对书稿的完整性和系统性提出了宝贵的意见,在此,特别表示感谢。

《Python+TensorFlow机器学习实战》对应的电子课件和实例源代码可以到http://www.tupwk.com.cn/downpage下载,也可通过扫描下方的二维码下载。

编著者


关于此书评价

暂无.

书摘内容

暂无.

Python+Tensorflow机器学习实战最新最全的试读、书评、目录、简介信息由Python中文网整理提供。